Improving Precision of Clinical Trials Results in T1 **Diabetes with Transferrable Prognostic Models**

Authors: A. Ooghe, J. Van Rampelbergh, S. Branders, N. Xaborov, J. Paul. D. Demolle, A. Pereira

Cognivia s.a., Mont-Saint-Guibert, Belgium

BACKGROUND:

- Assay sensitivity issues in RCTs affect statistical power and confidence in treatment efficacy
- Prognostic response contribute to this problem.
- Machine learning models, combining multiple covariates into a single prognostic index. offer a solution
- This analysis evaluates the transferability of the composite Placebell model, previously tested in pain and Parkinson's disease, to Type 1 Diabetes (T1D) trials

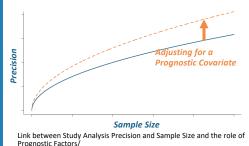
METHOD:

- The pre-trained Placebell pain model combines baseline factors (disease severity, psychological factors, demographics) into a single covariate
- Applied to T1D using data from the IMPACT study and its substudy (85 and 24 patients, respectively)
- Used to adjust analysis for four endpoints: Two C-peptide response measures, Average insulin consumption, HbA1c levels

RESULTS


- Improved analysis precision across endpoints:
 - C-peptide responses: Improvement between 2.9% and 52.2%
 - Insulin and HbA1c: Improvement between 1.6% and 20.9%
- Precision gains can be compared to an increase in effective sample size
- \rightarrow Equivalent to adding up to 44 patients in the main study CONCLUSION
- The Placebell model effectively adjusts for contextual effects in a T1D study
- Demonstrated strong transferability from other conditions
- Enhances assay sensitivity and precision, making trials more efficient

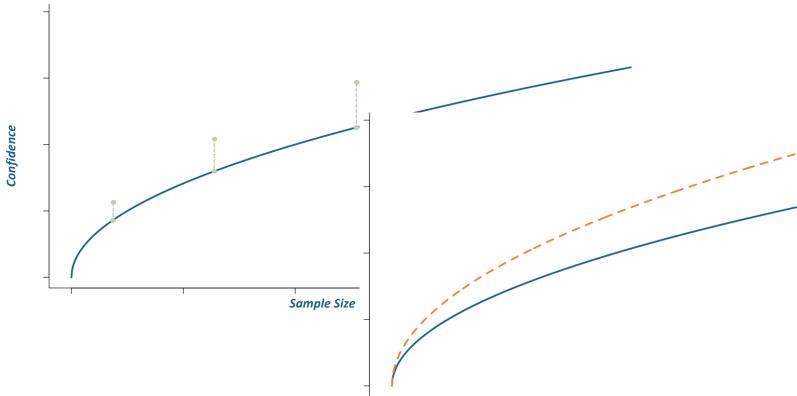
Prognostic factors remain the best solution to increase confidence in Study Results


	Main Study (N = 85)		Substudy (N = 24)	
Outcomes	Proportion of Contextual Effects Explained	Gain in Precision/ Effective Sample Size	Proportion of Contextual Effects Explained	Gain in Precision/ Effective Sample Size
-Peptide Response AUC of C-Peptide	34%	+51.5%	13.2%	+15.2%
Response Average Insulin	2.8%	+2.9%	34.3%	+52.2%
Consumption	17.3%	+20.9%	1.6%	+1.6%
HbA1c levels	10.5%	+11.7%	14.6%	+17.1%

SUPPLEMENTARY MATERIAL

Proportion of Contextual Effects explained by the prognostic model and the associated gain in precision when estimating the true treatment effect. This gain in precision is similar to a gain obtained by increasing the sample size in the same proportion

Comparison of the evolution of the C-Peptide Response in the main study between subjects with high and low Placebell score.


www.cognivia.com +32 71 14 02 00 info@cognivia.com

Sample Size

Take a picture to access to full

paper and more insights

coanivia

